

GaN on SiC HEMT Pulsed Power Transistor 120 W Peak, 3.1 to 3.5 GHz, 300 µs Pulse, 10% Duty

Rev. V2

Features

- GaN on SiC Depletion-Mode HEMT Transistor
- Common-Source Configuration
- Broadband Class AB Operation
- Thermally Enhanced Cu/Mo/Cu Package
- RoHS* Compliant
- +50 V Typical Operation
- MTTF = 600 Years (T_J < 200°C)
- EAR99 Export Classification
- MSL-1

The MAGX-003135-120L00 is a gold metalized matched Gallium Nitride (GaN) on Silicon Carbide RF power transistor optimized for civilian and military radar pulsed applications between 3.1 - 3.5 GHz. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, ruggedness over a wide bandwidth for today's demanding application needs. The MAGX-003135-120L00 is constructed using a thermally enhanced Cu/Mo/Cu flanged ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation in extreme mismatched conditions unparalleled semiconductor technologies.

Ordering Information

Part Number	Description
MAGX-003135-120L00	120 W GaN Power Transistor
MAGX-003135-SB5PPR	3.1-3.5 GHz Evaluation Board

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaN on SiC HEMT Pulsed Power Transistor 120 W Peak, 3.1 to 3.5 GHz, 300 µs Pulse, 10% Duty

Rev. V2

Electrical Specifications: Freq. = 3.1 - 3.5 GHz, T_A = 25°C

Parameter	Symbol	Min.	Тур.	Max.	Units
RF Functional Tests: P_{IN} = 10 W, V_{DD} = 50 V, I_{DQ} = 300 mA, Pulse Width = 300 μ s, Duty = 10%					
Peak Output Power	P _{OUT}	120	135	-	W
Power Gain	G _P	10.8	11.8	-	dB
Drain Efficiency	η_{D}	45	52	-	%
Load Mismatch Stability	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance	VSWR-T	-	10:1	-	-

Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 175 V	I _{DS}	-	0.5	9	mA
Gate Threshold Voltage	$V_{DS} = 5 \text{ V}, I_{D} = 23 \text{ mA}$	V _{GS (TH)}	-5	-3	-2	V
Forward Transconductance	V _{DS} = 5 V, I _D = 9 A	G _M	3.3	-	-	S
Dynamic Characteristics						
Input Capacitance	Not Applicable (Input Matched)	C _{ISS}	N/A	N/A	N/A	pF
Output Capacitance	$V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V}, \ F = 1 \text{ MHz}$	Coss	-	13.4	16	pF
Reverse Transfer Capacitance	V _{DS} = 50 V, V _{GS} = -8 V, F = 1 MHz	C _{RSS}	-	1.4	2.2	pF

GaN on SiC HEMT Pulsed Power Transistor 120 W Peak, 3.1 to 3.5 GHz, 300 µs Pulse, 10% Duty

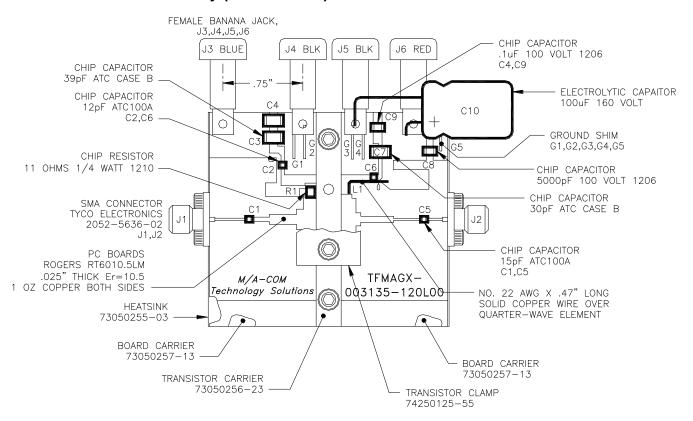
Rev. V2

Absolute Maximum Ratings 1,2,3,4,5

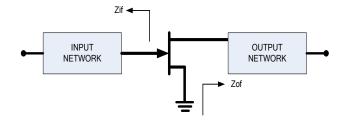
Parameter	Limit		
Input Power (P _{IN})	42 dBm		
Drain Supply Voltage (V _{DD})	+65 V		
Gate Supply Voltage (V _{GG})	-8 to 0 V		
Supply Current (I _{DD})	6.7 A		
Absolute Maximum Junction/Channel Temperature	200°C		
Pulsed Power Dissipation at 85 °C	170 W (Pulse Width = 100 μs) 144 W (Pulse Width = 300 μs)		
Operating Temperature	-40 to +95°C		
Storage Temperature	-65 to +150°C		
ESD Min Machine Model (MM)	50 V		
ESD Min Human Body Model (HBM)	250 V		

- 1. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 2. MACOM does not recommend sustained operation near these survivability limits.
- For saturated performance, the following is recommended: (3*V_{DD} + abs(V_{GG})) <175 V.
- Operating at nominal conditions with T_J≤ +200°C will ensure MTTF > 1 x 10⁶ hours. Junction temperature directly affects device MTTF and should be kept as low as possible to maximize lifetime.
- 5. Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) (P_{OUT} P_{IN})).$

Typical Transient Thermal Resistances ($I_{DQ} = 300$ mA, 300 μs pulse, 10% duty cycle):


- a) Freq. = 3.1 GHz, Θ_{JC} = 0.62°C/W T_J = 172°C (T_C = 82°C, 48 V, 5.34 A, P_{OUT} = 120 W, P_{IN} = 10.15 W)
- b) Freq. = 3.3 GHz, Θ_{JC} = 0.69°C/W T_J = 183°C (T_C = 83°C, 48 V, 5.37 A, P_{OUT} = 120 W, P_{IN} = 7.50 W)
- c) Freq. = 3.5 GHz, Θ_{JC} = 0.67°C/W $T_J = 177^{\circ}\text{C (T}_C = 84^{\circ}\text{C, 48 V, 5.25 A, P}_{OUT} = 120 \text{ W, P}_{IN} = 7.65 \text{ W)}$

GaN on SiC HEMT Pulsed Power Transistor 120 W Peak, 3.1 to 3.5 GHz, 300 µs Pulse, 10% Duty


Rev. V2

Evaluation Board Assembly (3.1 - 3.5 GHz)

Evaluation Board Impedances

Freq. (MHz)	Z _{IF} (Ω)	Z _{OF} (Ω)
3100	5.9 - j4.2	4.1 - j2.4
3300	5.2 - j4.8	4.0 - j2.8
3500	3.9 - j5.0	2.6 - j2.6

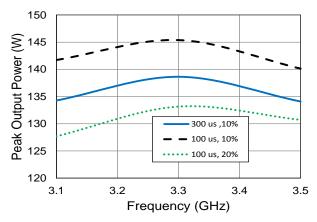
Correct Device Sequencing

Turning the device ON

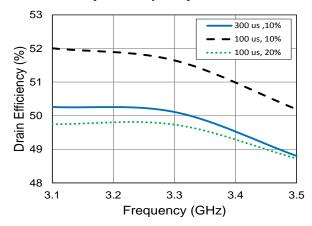
- 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

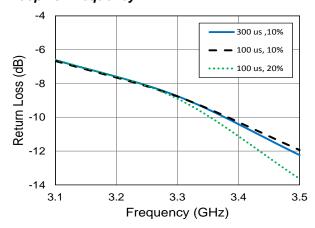
- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}

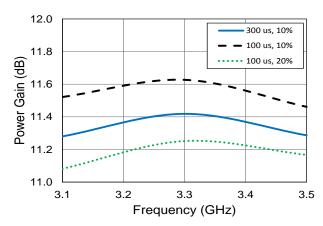


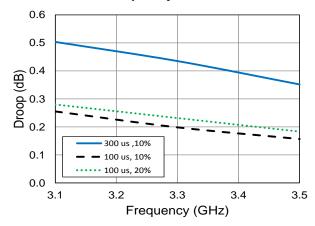
GaN on SiC HEMT Pulsed Power Transistor 120 W Peak, 3.1 to 3.5 GHz, 300 µs Pulse, 10% Duty


Rev. V2

Typical Performance Curves: $P_{IN} = 10 \text{ W}$, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 300 \text{ mA}$

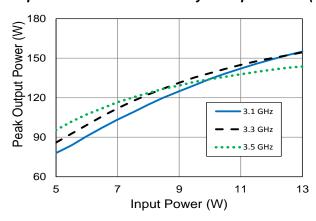

Peak Output Power vs. Frequency

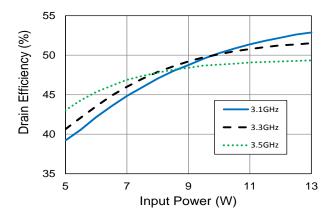

Drain Efficiency vs. Frequency


Droop vs. Frequency

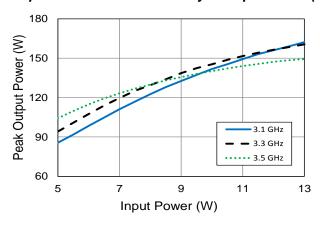
Power Gain vs. Frequency

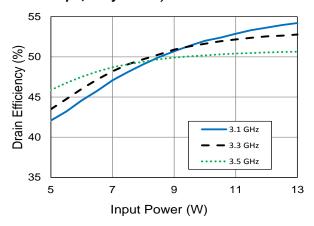
Return Loss vs. Frequency

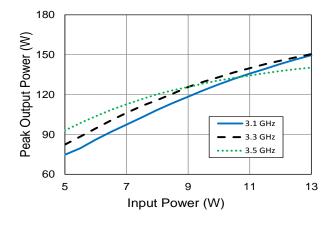


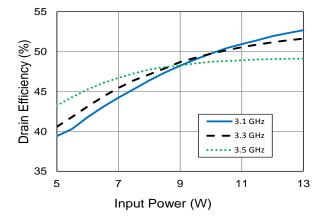

GaN on SiC HEMT Pulsed Power Transistor 120 W Peak, 3.1 to 3.5 GHz, 300 µs Pulse, 10% Duty

Rev. V2

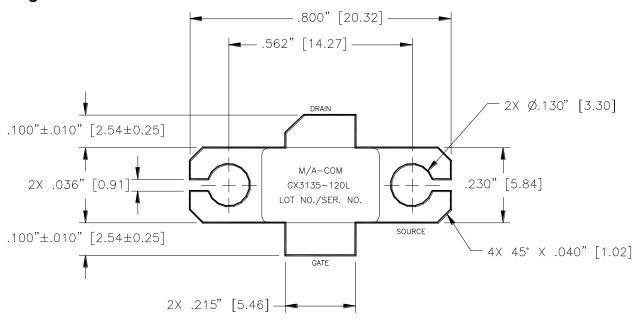

Typical Performance Curves: $V_{DD} = 50 \text{ V}$, $I_{DQ} = 300 \text{ mA}$

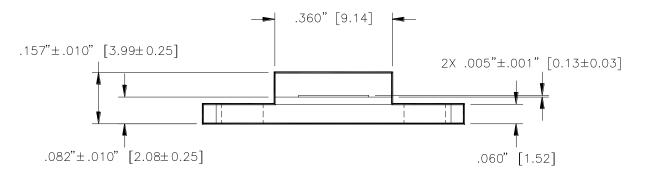

Output Power / Drain Efficiency vs. Input Power (Pulse Width = 300 μs, Duty = 10%)




Output Power / Drain Efficiency vs. Input Power (Pulse Width = $100 \mu s$, Duty = 10%)

Output Power / Drain Efficiency vs. Input Power (Pulse Width = 100 µs, Duty = 20%)





GaN on SiC HEMT Pulsed Power Transistor 120 W Peak, 3.1 to 3.5 GHz, 300 µs Pulse, 10% Duty

Rev. V2

Package Outline

Unless otherwise noted, tolerances are inches $\pm .005$ " [millimeters ± 0.13 mm]

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.